Stream processing is a common task in analytics related applications where large amount of data like click stream data are ingested into the system that has to processed by some worker. Kafka is a common choice here when reading from streams and also to coordinate message delivery between different workers. But it comes at an operational cost where there are a lot of components like ZooKeeper are involved that you have to maintain. Amazon’s kinesis is also a managed service from AWS to handle large amount of data.

For a lot of years Redis has also been modelled in a similar fashion with pub/sub and having blocking lists but they are not entirely designed with stream processing as the goal. They don’t offer persistence in case of pub/sub where it’s fire and forget method. Blocking list are one way but we have to co-ordinate between different workers so that two different consumers get the same message and so on. With this in mind antirez, creator of Redis came up with disque from the ground up. Then a lot of the ideas were added back to Redis in the form of streams. It’s an entirely new data structure focused on stream processing. It’s in beta now and will be available with Redis 5.0 . You can download the beta for this tutorial.


This tutorial uses Carmine as the Redis client and there is a PR open to add streams support. Since we have clj tools support we can build a local jar from the PR and use it for our tutorial. We also need the beta version of redis-server and redis-cli since streams are not GA as of now. The code along with the jar is available at GitHub

Read and write on streams

You can clone the repo and then start the repl with clj -Arebel which gives a nice REPL. You can then import the libraries needed for our tutorial. We will try to simulate weather report for a given location from different sensors and try to process them.

clj -Arebel
[Rebel readline] Type :repl/help for online help info
user=> (require '[taoensso.carmine :as car :refer (wcar)])
user=> (def server1-conn {:pool {} :spec {:host "" :port 6379}})
user=> (defmacro wcar* [& body] `(car/wcar server1-conn ~@body))
user=> (wcar* (car/ping))

Now that we have Redis connection setup we can try to insert some data. Redis provides XADD through which we can specify the stream name and then specify a set of key-value pairs for the given stream which is added as the data. In addition to that we also need to specify a pointer for the data. A sample to insert temperature for chennai city as stream name will be below :> XADD chennai * temperature 26 humidity 10


user=> (wcar* (car/xadd :chennai "*" :temperature 26 :humidity 10))

Note that the returned value might be different on your computer since it’s based on the current time at which the command is executed. Now we have created a stream named chennai and inserted a record of temperature and humidity. Redis autogenerates since we have specified “*” but we can use our own value which needs to be an integer and this has to be in an increasing order for every command. We also cannot insert two different records for the same timestamp and hence we have “-0” at the end. In case we need to insert it for the same timestamp value we need to specify the timestamp value as “1534572307702-1” and so on. They are immutable and increasing in order that we cannot change the value or go back in time to insert something in the middle of the stream. We can think of it as an append-only log.

Now that we have inserted a record we can read it back with XRANGE command as below by specifying the stream name and also the start and end which in this case is - and + to read the entire stream we can also specify an optional count of records to be returned :> xrange chennai - + count 1
1) 1) 1534572307702-0
   2) 1) "temperature"
      2) "26"
      3) "humidity"
      4) "10"


user=> (wcar* (car/xrange :chennai "-" "+" :count 1))
[["1534572307702-0" ["temperature" "26" "humidity" "10"]]]

Here instead of using - and + we can specify two different timestamps to read records only between those intervals which is useful to process timeseries data.> XADD chennai * temperature 26 humidity 10
1534573235388-0> XADD chennai * temperature 26 humidity 10
1534573236770-0> XADD chennai * temperature 26 humidity 10
1534573246706-0> xrange chennai 1534572307702-0 1534573236770-0
1) 1) 1534572962291-0
   2) 1) "temperature"
      2) "26"
      3) "humidity"
      4) "10"
2) 1) 1534573235388-0
   2) 1) "temperature"
      2) "26"
      3) "humidity"
      4) "10"
3) 1) 1534573236770-0
   2) 1) "temperature"
      2) "26"
      3) "humidity"
      4) "10"
user=> (wcar* (car/xrange :chennai "1534572307702-0" "1534573236770-0"))
[["1534572962291-0" ["temperature" "26" "humidity" "10"]]
["1534573235388-0" ["temperature" "26" "humidity" "10"]] 
["1534573236770-0" ["temperature" "26" "humidity" "10"]]]

Redis also provides XREVRANGE through which you can read it in reverse with similar options

user=> (wcar* (car/xrevrange :chennai "1534573236770-0" "1534572307702-0"))
[["1534573236770-0" ["temperature" "26" "humidity" "10"]]
["1534573235388-0" ["temperature" "26" "humidity" "10"]]
["1534572962291-0" ["temperature" "26" "humidity" "10"]]]

Producer and consumer

So now we can ingest some data and read from it but we have to record the last read value every time so that we can use it in the next call to continue from there and doing XRANGE is like polling the stream for every new record keeping track of the things we have read. Redis provides a blocking API called XREAD through which we can listen for new records in the stream instead of keeping track of the last position for each run.

Here we specify the block time in milliseconds as 0 which blocks indefinitely and we can pass the stream name and the position after which we need to wait for messages. “$” means that XREAD should use as last ID the maximum ID already stored in the stream mystream, so that we will receive only new messages, starting from the time we started listening. Instead of using “$” we can also specify a future position or a position we already have so executing the below command blocks the REPL

user=> (wcar* (car/xread :block 0 :streams :chennai "$"))

Now we can open redis-cli to add some new data that makes it to be received in the REPL> xadd chennai * temperature 29 humidity 10
user=> (wcar* (car/xread :block 0 :streams :chennai "$"))
[["chennai" [["1534573880742-0" ["temperature" "29" "humidity" "10"]]]]]

If we have specified a block of 1000ms then it will timeout after a second if there is no data and return nil

user=> (wcar* (car/xread :block 1000 :streams :chennai "$"))

On a similar note we can listen from various streams with XREAD command and lit alt channels on core.async and it returns the channel name along with the data received. For example the below listens for chennai and coimbatore weather data and in the redis-cli when we give data for coimbatore it returns that particular data.> xadd coimbatore * temperature 21 humidity 10
user=> (wcar* (car/xread :block 0 :streams :chennai :coimbatore "$" "$"))
[["coimbatore" [["1534574307777-0" ["temperature" "21" "humidity" "10"]]]]]

Note that the messages are not lost though you can still access them with XRANGE and also use XREAD with different positions.

Consumer groups

Now that we have different producer and consumers present for each stream we can put XREAD command in a while loop and make sure it receives new messages for the given streams but there comes a point where the producer produces a lot of data and the consumer takes up some processing time where we can’t handle the new with a single consumer so we need to introduce parallelise and introduce multiple consumers but we also need to handle other cases like balancing the workload, making sure the message is processed properly by the given consumer and it’s not delivered to two consumers at the same time leading to double processing.

Redis gives us the ability take care of these with the concept of XGROUP where we group different streams under a given group and then Redis takes care of balancing the workload, keeping track of message delivery and so on. First we need to create a group with one or more streams attached to the group as below> XGROUP CREATE chennai mygroup $
OK> XGROUP CREATE coimbatore mygroup $

Unfortunately XGROUP is still not supported in the PR and hence we need to use redis-cli to create the groups. Also we have specified “$” at the end which means that the group will listen for messages created after the group is created. We can now create a consumer called alice for the group and to listen for stream chennai. Here also we have specified “>” to give us only messages that are not yet given to other consumers. We block it for indefinite time and then we send a message from redis-cli which is received by the consumer> xadd chennai * temperature 29 humidity 10
user=> (wcar* (car/xreadgroup :block 0 :group :mygroup :alice 
                              :count 1 :streams :chennai ">"))
[["chennai" [["1534575255825-0" ["temperature" "29" "humidity" "10"]]]]]

Since we have delivered one message to alice we can spin up another consumer called bob in another REPL and listen in the same way. But let’s also keep alice waiting. So when we deliver a message with both alice and bob listening but alice with a message that has been received it’s to bob. Then if we tried a third message since bob has a message it’s delivered to alice. So we can see it’s delivered in a uniform manner across the consumers. Now if we stop bob from running then we can see all messages only delivered to alice> xadd chennai * temperature 29 humidity 10 # delivered to bob
1534575541148-0> xadd chennai * temperature 29 humidity 10 # delivered to alice
1534575545317-0> xadd chennai * temperature 29 humidity 10 # Bob is not listening so deliver to alice
1534575787128-0> xadd chennai * temperature 29 humidity 10 # Bob is not listening so deliver to alice
;; 2nd message
user=> (wcar* (car/xreadgroup :block 0 :group :mygroup :bob 
                              :count 1 :streams :chennai ">"))
[["chennai" [["1534575541148-0" ["temperature" "29" "humidity" "10"]]]]]
;; 3rd message
user=> (wcar* (car/xreadgroup :block 0 :group :mygroup :alice 
                              :count 1 :streams :chennai ">"))
[["chennai" [["1534575545317-0" ["temperature" "29" "humidity" "10"]]]]]

;; Bob is not listening so all new messages go to alice

user=> (wcar* (car/xreadgroup :block 0 :group :mygroup :alice 
                              :count 1 :streams :chennai ">"))
[["chennai" [["1534575545317-0" ["temperature" "29" "humidity" [["chennai" [["1534575787128-0" ["temperature" "29" "humidity" "10"]]]]]
user=> (wcar* (car/xreadgroup :block 0 :group :mygroup :alice 
                              :count 1 :streams :chennai ">"))
[["chennai" [["1534575790316-0" ["temperature" "29" "humidity" "10"]]]]]

For each messages received by the consumer we need to acknowledge that the message has been processed with XACK. If we don’t acknowledge it then it will be marked as pending by Redis. Redis also provides us XPENDING through which we can see the pending messages. We have 5 pending messages for chennai and we have alice with 4 and bob with 1 with 1534575255825-0 as minimum position and 1534575790316-0 as maximum position for the pending messages.> XPENDING chennai mygroup
1) (integer) 5
2) 1534575255825-0
3) 1534575790316-0
4) 1) 1) "alice"
      2) "4"
   2) 1) "bob"
      2) "1"
user=> (wcar* (car/xpending :chennai :mygroup))
[5 "1534575255825-0" "1534575790316-0" [["alice" "4"] ["bob" "1"]]]

We can also see the pending messages and the number of milliseconds they have been in pending state with each consumer.> xpending chennai mygroup - + 10
1) 1) 1534575255825-0
   2) "alice"
   3) (integer) 1076807
   4) (integer) 1
2) 1) 1534575541148-0
   2) "bob"
   3) (integer) 791484
   4) (integer) 1
3) 1) 1534575545317-0
   2) "alice"
   3) (integer) 787315
   4) (integer) 1
4) 1) 1534575787128-0
   2) "alice"
   3) (integer) 545504
   4) (integer) 1
5) 1) 1534575790316-0
   2) "alice"
   3) (integer) 542316
   4) (integer) 1
user=> (wcar* (car/xpending :chennai :mygroup "-" "+" 10))
;; [message-id consumer pending-ms  number-of-times-delivered]
[["1534575255825-0" "alice" 1021148 1] 
 ["1534575541148-0" "bob" 735825 1]
 ["1534575545317-0" "alice" 731656 1]
 ["1534575787128-0" "alice" 489845 1]
 ["1534575790316-0" "alice" 486657 1]]

We can acknowledge the message ID from redis-cli since XACK is not available in carmine and we can see the decrease in count> XACK chennai mygroup 1534575790316-0
(integer) 1
user=> (wcar* (car/xpending :chennai :mygroup "-" "+" 10))
[["1534575255825-0" "alice" 1444696 1] 
 ["1534575541148-0" "bob" 1159373 1] 
 ["1534575545317-0" "alice" 1155204 1] 
 ["1534575787128-0" "alice" 913393 1]]

Weather processing

Now we can write a consumer that pushes data for every second with temperature and humidity without any delay that is around 86400 messages. We can spin up a worker called that sleeps for 1 sec to print the message. Then we can spin up bob as another worker and we can see faster processing. Then we can stop bob and alice returns back to taking up all the messages. Thus Redis helps in distribution of the load and making sure the messages are delivered to the consumer only once. We can also see it takes only around 3-4MB to have 86400 messages in a Redis instance. First we need to flush everything and create stream with some dummy data and then create a group for the city. Now when we start the produce all the messages will be up for consumption from the point of view of the group.> FLUSHALL
OK> xadd chennai 1 temperature 29 humidity 10
1-0> XGROUP CREATE chennai mygroup $
➜  redis-streams git:(master)time clj -m producer
Inserted 86400 records successfully in  2299  ms at the rate of  37.58155719878208  records per ms
clj -m producer  32.05s user 1.00s system 280% cpu 11.764 total


➜  redis-streams git:(master) ✗ time clj -m consumer alice
Processing messages by consumer :  alice
Processing message :  [[chennai [[1534291200-0 [sensor 1 temperature 21]]]]]
Processing message :  [[chennai [[1534291201-0 [sensor 1 temperature 28]]]]]
Processing message :  [[chennai [[1534291202-0 [sensor 1 temperature 24]]]]]
Processing message :  [[chennai [[1534291203-0 [sensor 1 temperature 22]]]]]
... After bob has been started 231, 233, 235 and so on
Processing message :  [[chennai [[1534291231-0 [sensor 1 temperature 20]]]]]
Processing message :  [[chennai [[1534291233-0 [sensor 1 temperature 24]]]]]
Processing message :  [[chennai [[1534291235-0 [sensor 1 temperature 27]]]]]
... Stop bob and returns back to 263, 264, 265 and so on with 262 picked up by bob but stopped before printing
Processing message :  [[chennai [[1534291261-0 [sensor 1 temperature 26]]]]]
Processing message :  [[chennai [[1534291263-0 [sensor 1 temperature 29]]]]]
Processing message :  [[chennai [[1534291264-0 [sensor 1 temperature 29]]]]]
Processing message :  [[chennai [[1534291265-0 [sensor 1 temperature 20]]]]]
Processing message :  [[chennai [[1534291266-0 [sensor 1 temperature 20]]]]]
Processing message :  [[chennai [[1534291267-0 [sensor 1 temperature 20]]]]]
Processing message :  [[chennai [[1534291268-0 [sensor 1 temperature 28]]]]]

** Bob ** : You can see the sequence to be of the form 232, 234, 236 and so on with Alice processing 233, 235, 237 and so on. Stop bob and 260 and then messages from

➜  redis-streams git:(master) ✗ time clj -m consumer bob
Processing messages by consumer :  bob
Processing message :  [[chennai [[1534291232-0 [sensor 1 temperature 20]]]]]
Processing message :  [[chennai [[1534291234-0 [sensor 1 temperature 20]]]]]
Processing message :  [[chennai [[1534291236-0 [sensor 1 temperature 22]]]]]
Processing message :  [[chennai [[1534291238-0 [sensor 1 temperature 25]]]]]
Processing message :  [[chennai [[1534291240-0 [sensor 1 temperature 21]]]]]
... Stop at 261 which is not printed
Processing message :  [[chennai [[1534291260-0 [sensor 1 temperature 21]]]]]
clj -m consumer bob  43.09s user 1.30s system 143% cpu 31.026 total

Memory> info memory
...> xlen chennai
(integer) 86400


Streams are pretty great and if you already have Redis in your tech stack then I think they will be a great fit for stream processing instead of adding more components and also easy to monitor and administer. They are still on beta but will be GA soon and I love to use them in production. Thanks much Salvatore Sanfilippo and the community for a great software that is known for its stability and code quality.

switches to swiggy for lunch

If you like this post then you might like my other posts on similar subjects :